Roll No: \square
BTECH
(SEM II) THEORY EXAMINATION 2021-22
ENGINEERING MATHS-II
Time: 3 Hours
Total Marks: 70
Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 * 7=14$

a.	Calculate order and degree of the differential equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}=k \frac{d^{2} y}{d x^{2}}$.
b.	Find particular integral of $(D-2)^{2} y=8 e^{2 x}$.
c.	Prove that $J_{0}{ }^{\prime}(x)=-J_{1}(x)$.
d.	Evaluate $\int_{-1}^{1} x^{2} P_{2}(x)$ dx.
e.	Find the Laplace transform of $F(t)=e^{t} t^{-1 / 2}$.
f.	Find the function whose Laplace transform is $\frac{e^{-\pi s}}{s^{2}+2}$.
g.	Find the Fourier constant a_{n} for $f(x)=x \cos x$ in the interval $(-\pi, \pi)$.

SECTION B

2. Attempt any three of the following:
a. Solve by changing independent variable the differential equation $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+\left(1+x x^{2} d x+y=4 \cos \operatorname{lo}(11+x)\right.$.
b. Use Frobenius inghod to find the series solution of $2 x(1-x) \frac{d^{2} y}{d}(5-7 x) \frac{d y}{d x}-3 y=0$.
c. State Cquvolution Theorem and hence evaluate $L^{-1}\left[\frac{s}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right]$

e. If a string of fength l is initially at rest in equilibrium position and each of its point is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0}=b \sin ^{3} \frac{\pi x}{l}$, find the displacement $y(x, t)$.

SECTION C

3. Attempt any one part of the following:
a. Solve the following simultaneous differential equations

	$\frac{d x}{d t}=3 x+2 y, \frac{d y}{d t}=5 x+3 y$
b.	Solve the differential equation $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=\frac{e^{-x}}{x+2}$.

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

\square
BTECH
(SEM II) THEORY EXAMINATION 2021-22
ENGINEERING MATHS-II
4. Attempt any one part of the following:
a. axpress $F(x)=x^{3}-5 x^{2}+x+2$ in terms of Legendre's polynomials.
b. Prove that $J_{3 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right)$.
5. Attempt any one part of the following:
a. Find the Laplace transform of the rectified semi-wave function defined by

$$
f(t)=\left[\begin{array}{l}
\sin w t, 0<t \frac{\pi}{w} \\
0 \\
0 \\
, \frac{\pi}{w}<t<\frac{2 \pi}{w}
\end{array}\right.
$$

b. Using Laplace transform, evaluate the integral $\int_{0}^{\infty} \frac{e^{-2 t}-e^{-4 t}}{t} d t$
6. Attempt any one part of the following:
a. \quad Obtain the Fourier series for the function $f(x)=x \sin x, 0<x<2 \pi$.
b. Solve the linear partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=\sin (2 x+3 y)$.
7. Attempt any one part of the following:
a. Use the method ditseparation of variables to solve the equation $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+$ g) given that $u(x, 0)=6 e^{-3 x}$.
b. The temp fature distribution in a bar of length π which is perfectly insulated at ends $x=0$ and $x=\pi$ is governed by partial differential equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$. Assuming the initial temperature distribution as $u(x, 0)=f(x)=\cos 2 x$. Find the temperature distribution at any instant of time.

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

